Preliminary communication

SYNTHESIS OF A VINYLCARBYNETETRAIRON COMPLEX. CRYSTAL AND MOLECULAR STRUCTURE OF $[(C_5H_5)_2(CO)_2Fe_2(\mu-CO)]_2$ - $(\mu-C_5H_3)^+$ BF₄⁻

CHARLES P. CASEY*, MARK S. KONINGS and KENNETH J. HALLER Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (U.S.A.) (Received November 7th, 1985)

Summary

The diiron vinyl ether carbyne complex $[(C_5H_5)(CO)Fe]_2(\mu$ -CO)-(μ -CCH=CHOCH_2CH_3)⁺ BF_4⁻ (1) reacted with the diiron ethenylidene complex $[(C_5H_5)(CO)Fe]_2(\mu$ -CO)(μ -C=CH₂) (2) to yield the tetrairon complex $[(C_5H_5)_2(CO)_2Fe_2(\mu$ -CO)]_2(μ -C₅H₃)⁺ BF₄⁻ (3) which was characterized by spectroscopy and by single crystal X-ray diffraction.

Recently we reported the synthesis of vinylcarbynediiron complexes by the condensation of cationic μ -alkylidynediiron complexes with aldehydes, acetone, and orthoesters [1]. We believe that these reactions involve attack of a carbon electrophile (such as a protonated aldehyde) on the electron rich double bond of an intermediate diiron bridging alkenylidene complex. The driving force for the reaction is the formation of a new carbon—carbon bond and of a carbocation stabilized by two electron donor iron centers. We have also found that cationic vinylcarbyne complexes are readily attacked by nucleophiles such as PMe₃ [2] or NaCH(CO₂CH₂CH₃)₂ [3] at the remote vinyl carbon atom to generate new bridging alkenylidene complexes. Here we report the coupling of a μ -alkenylidenediiron complex with a cationic vinylcarbyne complex that combines these two types of reactivity to produce a complex in which two diiron groups are joined by a μ -C₅H₃ bridge.

0022-328X/86/\$03.50

© 1986 Elsevier Sequoia S.A.

When a solution of $[(C_5H_5)(CO)Fe]_2(\mu$ -CO) $(\mu$ -CCH=CHOCH₂CH₃)*BF₄⁻ (1) [1] (200 mg, 0.40 mmol) and $[(C_5H_5)(CO)Fe]_2(\mu$ -CO) $(\mu$ -C=CH₂) (2) [4] (258 mg, 0.76 mmol) were stirred in 40 ml of THF at ambient temperature under N₂, a coupling reaction took place to generate $[(C_5H_5)_2(CO)_2Fe_2$ - $(\mu$ -CO)]₂ $(\mu$ -C₅H₃)* BF₄⁻ (3). Concentration of the solvent to 10 ml and addition of 50 ml diethyl ether led to the isolation of 3 as pink-brown microcrystals (270 mg, 84%) slightly contaminated with solvent. Analytically pure 3 was obtained by recrystallization from CH₂Cl₂.

Fig. 1. Structure of 3 with BF_4^- and hydrogens omitted.

3 was readily identified by ¹H NMR. The distinguishing features of 3 in the ¹H NMR are the presence of a two proton doublet at δ 9.10 ppm (J 12.6 Hz, μ -C-CH) and a one proton triplet at δ 7.73 ppm (J 12.6 Hz, μ -C-CH-CH). The four C₅H₅ rings give rise to a twenty proton singlet at δ 5.44 ppm at 30°C. Since the X-ray structure of 3 has two different types of C₅H₅ rings, the observation of a single room temperature C₅H₅ resonance implies a fluxional process that interchanges the environment of the C₅H₅ rings [3]. The ¹³C NMR, IR, and elemental analysis are also consistent with the proposed structure [5].

In order to more closely define the bonding within the five carbon bridge and to determine the stereochemistry at opposite ends of the molecule, we

TABLE 1

SELECTED BOND LENGTHS AND BOND ANGLES FOR 3

eg
(2) 134.3(6)
(2) 141.7(6)
(4) 138.3(6)
(4) 136.8(6)
3) 124.8(7)
4) 127.5(7)
5) 125.0(7)

TABLE 2

SUMMARY OF CRYSTAL DATA AND INTENSITY COLLECTION

Empirical formula	$C_{31}H_{23}BF_{4}Fe_{4}O_{6}$
Formula weight	801.713
Crystal dimensions, mm	0.05 × 0.30 × 0.80
Temperature, K	297
Cell parameters, a, Å	8.712 (2)
b, A	27.598 (9)
<i>c</i> , A	13.000 (3)
β , deg	98.13 (2)
Space group	P21/c
Z	4
Density, calcd, g/cm ³	1.72
Absorption correction	Psi-scan method
Absorption coeff. μ , cm ⁻¹	18.1
Diffractometer	Nicolet P3/F
Radiation	Graphite-monochromated
	Mo-K _α (λ 0.71073 nm)
Scan range	$1 \text{ deg below } 2\theta \text{ Mo-}K_{\alpha_1}$ to
	1 deg above 2θ Mo $-K_{02}$
Scan speed, deg/min	3.5-29.3
Scan type	$\theta - 2\theta$
2θ limits, deg	3.00-50.67
$\sin \theta /_{\lambda \max}$, A ⁻¹	0.602
Unique data, theoretical	7092
$F_{\rm O} > 3\sigma(F_{\rm O})$	3716
R	0.068
Rw	0.057
Goodness of fit	1.51
Number of variables	412
Largest peak, final difference map	0.83 e/Å ³

undertook a single crystal X-ray diffraction study [6]. 3 crystallizes as light purple plates in the monoclinic space group $P2_1/c$, a 8.712(2) Å, b 27.598(9), c 13.000(3) Å, β 98.13(2)°, V 3094(1) Å³, and Z = 4. The structure of 3 is shown in Fig. 1. Bond lengths and angles for the Fe₄C₅ core are given in Table 1, the crystal data and reference collection is given in Table 2. The remaining bond lengths and angles are similar to those of related structures [1,7,8] and are available as supplementary material [9]. The four iron atoms and the five carbons of the bridging C₅H₃ group lie nearly in the same plane. The maximum deviation from planarity is for Fe(4), 0.22 Å. The cis-C₅H₅ ligands of one diiron unit are above the Fe₄C₅ plane and the cis-C₅H₅ ligands of the other diiron unit are below the Fe₄C₅ plane. While 3 possesses no crystallographically imposed symmetry, this tetrairon cation possesses a pseudo C₂ axis passing through the center carbon of the μ -C₅H₃ group and lying in the Fe₄C₅ plane.

There are no significant differences between the carbon—carbon bond lengths $(1.37 \pm 0.01 \text{ Å})$ of the μ -C₅H₃ unit. The similarity of the bond lengths is readily understood in terms of the two equivalent resonance forms for this planar, delocalized π -system.

We believe that the formation of 3 is initiated by attack of the electron rich double bond of ethenylidene complex 2 on the remote vinyl carbon of the cationic vinyl ether carbyne complex 1. Subsequent loss of ethanol produces 3.

Acknowledgement. Support from the National Science Foundation is gratefully acknowledged.

References

- 1 C.P. Casey, M.S. Konings, R.E. Palermo, and R.E. Colborn, J. Am. Chem. Soc., 107 (1985) 5296.
- 2 C.P. Casey, and S.R. Marder, Organometallics, 4 (1985) 411.
- 3 C.P. Casey, and M.S. Konings, unpublished results.
- 4 G.M. Dawkins, M. Green, J.C. Jeffery, and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1980) 1120.
- 5 ¹³C ¹H NMR (50.10 MHz, acetone-d₆, 0.07 M Cr(acac)₈) δ 379.1 (μ-C), 259.4 (μ-CO), 210.4 (CO), 156.2 (μ-C-CH), 148.5(μ-C-CH), 91.2 (C₆H₅). IR (CH₄Cl₃) ν(CO) 2010 (s), 1990 (sh), 1830 (m), 1822 (m) cm⁻¹. Anal. Found: C, 46.30; H, 2.79. C₃₁H₃₃BF₄Fe₄O₆ calcd.: C, 46.44; H, 2.89%.
 6 Single crystals of 3, approximate dimensions 0.05 × 0.30 × 0.80 mm³ were obtained by vapor diffu-
- 6 Single crystals of 3, approximate dimensions $0.05 \times 0.30 \times 0.80 \text{ mm}^3$ were obtained by vapor diffusion of diethyl ether into a concentrated solution of 3 in CH₂Cl₂ under N₂ at -15° C. The crystal was attached to the walls of a capillary with grease and sealed under N₂. Data reduction, solution, and refinement of the structure were performed with the SHELXTL structure determination package (Nicolet XRD Corp., Madison, WI).
- 7 C.P. Casey, S.R. Marder and A.L. Rheingold, Organometallics, 4 (1985) 762.
- 8 C.P. Casey, P.J. Fagan, and V.W. Day, J. Am. Chem. Soc., 104 (1982) 7360.
- 9 Tables of bond lengths and angles, atomic coordinates, anisotropic thermal parameters, and hydrogen atom coordinates and isotropic thermal parameters, are available as supplementary material from the authors.